Guia 1
Para la resolucion es esta guia aplique Las ecuaciones de Cauchy-Riemann
Son dos ecuaciones diferenciales parciales que son básicas en el análisis de funciones complejas de variable compleja, debido a que su verificación constituye una condición necesaria (aunque no suficiente) para la derivabilidad de este tipo de funciones.
Sea una función compleja f(z), con z = x + iy. Se sabe que f(z) se puede descomponer en suma de dos funciones reales de dos variables u y v, de manera que f(z) = f(x,y) = f(x + iy) = u(x,y) + iv(x,y). Si la función f(z) es derivable en un punto z0 = x0 + iy0 entonces deben verificarse las condiciones de Cauchy-Riemann:
ux(x0,y0) = vy(x0,y0)
vx(x0,y0) = − uy(x0,y0)
Donde ux significa la derivada parcial de la función u respecto a la variable x, usualmente
Además se cumple que el valor de la derivada en el punto, de existir, debe ser:
f'(z0) = ux(x0,y0) + ivx(x0,y0) = vy(x0,y0) − iuy(x0,y0)
Guia 2
Para la resolucion de esta guia use los metodos de Cauchy-Goursat y Morera

